2024年3月15日 星期五

企業導入 AI 輔助方案:廣義用法 ChatGPT / 設計行銷 Stable Diffusion 與 AI 主播 / 程式開發 Github Copilot

各大 AI 應用大放光彩一年多後,上個月也接到一個任務要去評估各大 AI 服務是否能大力提升公司同仁工作效率,然而最近會被找去跟人分享交流,想著想著,還是把一些公開的資料整理一下,方便以後交流丟 link 偷懶

主要將工作輔助切成四大塊:
  1. 廣義 AI 助理
  2. 設計行銷生成式 AI 需求
  3. 研發工程 Code Suggestion / Code Review
  4. 使用 OpenAI API 自行開發服務,如 客服信半自動回應系統
廣義 AI 應用,那就是 AI 助理,可直接用 ChatGPT 即可,無論是個人免費還是付費版,單純 GPT-3.5 免費版也能完成七成工作,而掏錢加碼到付費版,則可以擁有更多應用,包括可安裝 plugins ,能直接下載訊息中的 link 資訊加以分析,我想,最主要的是可以上傳檔案叫 ChatGPT 分析吧!舉凡 PDF 還是 CSV 都行,還可以叫他去下載指定 link 內容回來分析。像近期 微軟 Copilot 推得很兇,免費版也能體驗到 GPT-4 turbo 了


2024-03-15 報價 - openai.com/chatgpt/pricing

ChatGPT Team 可以月為單位測試,習慣後改成年繳省錢便宜

如果願意的話,可以試試 ChatGPT Team 版本,原先發信給 ChatGPT Sales 詢問 Enterprise 該怎樣申請,交談幾次需求後被回說用 ChatGPT Team 已經足夠!

在 ChatGPT Team 付費服務下,開帳號流程進入邀請式架構,直接輸入同事信箱即可。讓同事在創建 ChatGPT 帳號是很順暢的(不用簡訊認證),這對 ChatGPT 不支援的國家地區是有很大的幫助的。當然,有興趣的話,還是可以多試試排行榜上的幾間,如 Claude AI (Anthropic 創辦人都是 OpenAI 出身)、Mistral AI 和 Google AI (Gemini) 和 Microsoft AI (基本上用 OpenAI 也行) 等。


2024-03-15 ChatGPT - Plugin store



關於設計行銷生成式 AI 需求,首先就是建立 Stable Diffusion (Stability AI) 準沒錯,把以文字生圖的項目先準備好,接著則是 MidJourney 也要去參拜一下。然而,在行銷資訊上,如何產出多影音應當是當務之急,這邊可以參考數位時代 AI 主播,該篇文章已經提了不少重點

  1. 先找到 model 拍個正面照,接著再轉成2D形象
  2. 使用 d-id.com 產出人物嘴型會跟文字變化的效果(也能上傳錄好的聲音檔案)
  3. 接著再把製作好的影片下載會來後製,像是去除背景,整合到新的影片內容
以上是簡單的原理,後續就可以靠這招套版型,做成 AI 虛擬主播,未來可以制式化產生影片,光這項就能省上不少時間。此外,也可以留意 17Live 的 政治類AI主播「答可特」,整體上數位時代AI主播已經很清晰建置流程,要說缺點的話,就是數位時代 AI主播 的模型源自於一位真實的記者,包括記者的語言偏好年紀習性都全盤複製,在這個隱私時代裡,可能適合先退一步思考該怎樣保護隱私?或是個人肖像權版權等。

對於在雲台上架設 Stable Diffusion 的確燒錢,可以一同評估買顯卡自架,估計預算都要抓個10萬台幣以內會比較彈性。其實雲台用法應當用多少算多少,除非設計團隊可以配合到要使用時開機,不然架設雲台的開銷,要求 GPU 16G vram 時,錢真的用噴的,例如一小時 3美金。


單純用 "16G vram" 去問問 google ,可以得到目前市價販售的顯卡價格,且很有可能還用 "24G vram" 了 XD 價格飛奔上去。

對設計行銷的素材使用還不太清楚成效,很難決議是否該自建 server ,特別是 AI 產出的圖片影音還要面對商用版權問題,這時,直接用線上服務掏錢用商用版!未來有版權問題時,公司自身也可以比較輕鬆,可以直接說是 XXX 公司提供的商用版,請對方去告 (誤)

2024-03-15 Github Copilot 價錢 - github.com/features/copilot

關於研發工程的利器 Code Suggestion,研究了 Tabnine, Tabnine Pro, Gitlab Duo, Github Enterprise Cloud, Github Enterprise Server (Private Cloud) 後,最終選擇 Github Copilot 個人版,主因:
  • 若決議公司程式碼不上到 github.com,使得 Github Team 方案也變成多餘(且安全管控相對差),因此也不用考慮 Github Copilot Business 方案了
  • 實測 Tabnine Pro 用起來剛好略遜於 Github Copilot 個人版,這當然可能只是純個案,畢竟每一次詢問成果都是不一樣的,個人覺得用 OpenAI 牌的 Github Copilot 後面又有 open source 訓練而來以及微軟背書,假設稱不上市場第一名,理當也不會是最後一名的選擇,不吃虧的。

2024-03-15 Github Copilot Use GPT-3.5 Turbo Model

此外,在 Github Copilot 網頁上可以看到他是建構在 GPT-3.5 turbo ,推論不用到 GPT-4 成效也已經很不錯,以及啊,眾多 AI 服務創辦人,很多都源自於 OpenAI 這個團隊的,在這種情境下,採用 OpenAI 為主的服務,其實不太會吃虧的,算是不錯的開局。


vscode + github copilot chat 範例


vscode + copilot: 07~29 是 copilot 補的

最後,簡單提一下使用 OpenAI API 自行開發 AI 輔助應用,這段屬於高度客製化的項目,很吃研發人力且成效的優化也是要持續的,就像 Machine learning 一樣,當 AI 回饋的答案不好時,需要把結果存起來再次餵回去給 OpenAI 練出新的 Model ,往後就用指定 Model 來問問題。



練法其實還滿簡單的,如以往推薦系統建置流程差不多,反而前期的資料清理、設計回饋系統架構、如何整合在公司內部服務內透過 UX 節省時間,這些才是整個應用最吃重的工程整合。

我想,回歸到最初,其實只要啟用了廣義 AI 輔助系統即可,起手式鼓勵大家用免費版 ChatGPT 或微軟 Copilot 服務,基本上會有很顯著的改變了,當然,這類 AI 輔助系統不是萬能的,就像二十年前 Search Engine 橫空出世一樣,還是使用者問對問題才是核心,套個 Youtuber 超認真少年花 400萬 老大樓重整 (印象中標題有350變成400了? ) 的片段心得:

交給年輕的設計師還是有經驗的設計師?給予回饋一樣可以有不錯的成果,差別就差在效率(效率影響用料量、製程時間)

可能有經驗的高手透過 AI 問個 3句話就搞定,而經驗淺的新手可能 30 句都還沒問完,站在 Machine learning 的角度,新手還是可以透過 AI 回饋+自身經驗提升,最終得到想要的結果(而花的時間比較多)

這時,你覺得 AI 輔助效益差,究竟是 AI 真的很差?還是使用者對於要解的任務,其的經驗還不夠充足呢?

其他資訊(AI演進太快要加日期提醒自己新鮮程度):


沒有留言:

張貼留言